Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Favorable Conditions for Genomic Evaluation to Outperform Classical Pedigree Evaluation Highlighted by a Proof-of-Concept Study in Poplar.

Identifieur interne : 000400 ( Main/Exploration ); précédent : 000399; suivant : 000401

Favorable Conditions for Genomic Evaluation to Outperform Classical Pedigree Evaluation Highlighted by a Proof-of-Concept Study in Poplar.

Auteurs : Marie Pégard [France] ; Vincent Segura [France] ; Facundo Mu Oz [France] ; Catherine Bastien [France] ; Véronique Jorge [France] ; Leopoldo Sanchez [France]

Source :

RBID : pubmed:33193528

Abstract

Forest trees like poplar are particular in many ways compared to other domesticated species. They have long juvenile phases, ongoing crop-wild gene flow, extensive outcrossing, and slow growth. All these particularities tend to make the conduction of breeding programs and evaluation stages costly both in time and resources. Perennials like trees are therefore good candidates for the implementation of genomic selection (GS) which is a good way to accelerate the breeding process, by unchaining selection from phenotypic evaluation without affecting precision. In this study, we tried to compare GS to pedigree-based traditional evaluation, and evaluated under which conditions genomic evaluation outperforms classical pedigree evaluation. Several conditions were evaluated as the constitution of the training population by cross-validation, the implementation of multi-trait, single trait, additive and non-additive models with different estimation methods (G-BLUP or weighted G-BLUP). Finally, the impact of the marker densification was tested through four marker density sets. The population under study corresponds to a pedigree of 24 parents and 1,011 offspring, structured into 35 full-sib families. Four evaluation batches were planted in the same location and seven traits were evaluated on 1 and 2 years old trees. The quality of prediction was reported by the accuracy, the Spearman rank correlation and prediction bias and tested with a cross-validation and an independent individual test set. Our results show that genomic evaluation performance could be comparable to the already well-optimized pedigree-based evaluation under certain conditions. Genomic evaluation appeared to be advantageous when using an independent test set and a set of less precise phenotypes. Genome-based methods showed advantages over pedigree counterparts when ranking candidates at the within-family levels, for most of the families. Our study also showed that looking at ranking criteria as Spearman rank correlation can reveal benefits to genomic selection hidden by biased predictions.

DOI: 10.3389/fpls.2020.581954
PubMed: 33193528
PubMed Central: PMC7655903


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Favorable Conditions for Genomic Evaluation to Outperform Classical Pedigree Evaluation Highlighted by a Proof-of-Concept Study in Poplar.</title>
<author>
<name sortKey="Pegard, Marie" sort="Pegard, Marie" uniqKey="Pegard M" first="Marie" last="Pégard">Marie Pégard</name>
<affiliation wicri:level="3">
<nlm:affiliation>BioForA, INRA, ONF, Orléans, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>BioForA, INRA, ONF, Orléans</wicri:regionArea>
<placeName>
<region type="region">Centre-Val de Loire</region>
<region type="old region">Région Centre</region>
<settlement type="city">Orléans</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Segura, Vincent" sort="Segura, Vincent" uniqKey="Segura V" first="Vincent" last="Segura">Vincent Segura</name>
<affiliation wicri:level="3">
<nlm:affiliation>BioForA, INRA, ONF, Orléans, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>BioForA, INRA, ONF, Orléans</wicri:regionArea>
<placeName>
<region type="region">Centre-Val de Loire</region>
<region type="old region">Région Centre</region>
<settlement type="city">Orléans</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>AGAP, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>AGAP, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier</wicri:regionArea>
<placeName>
<region type="region">Occitanie (région administrative)</region>
<region type="old region">Languedoc-Roussillon</region>
<settlement type="city">Montpellier</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mu Oz, Facundo" sort="Mu Oz, Facundo" uniqKey="Mu Oz F" first="Facundo" last="Mu Oz">Facundo Mu Oz</name>
<affiliation wicri:level="3">
<nlm:affiliation>BioForA, INRA, ONF, Orléans, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>BioForA, INRA, ONF, Orléans</wicri:regionArea>
<placeName>
<region type="region">Centre-Val de Loire</region>
<region type="old region">Région Centre</region>
<settlement type="city">Orléans</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bastien, Catherine" sort="Bastien, Catherine" uniqKey="Bastien C" first="Catherine" last="Bastien">Catherine Bastien</name>
<affiliation wicri:level="3">
<nlm:affiliation>BioForA, INRA, ONF, Orléans, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>BioForA, INRA, ONF, Orléans</wicri:regionArea>
<placeName>
<region type="region">Centre-Val de Loire</region>
<region type="old region">Région Centre</region>
<settlement type="city">Orléans</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Jorge, Veronique" sort="Jorge, Veronique" uniqKey="Jorge V" first="Véronique" last="Jorge">Véronique Jorge</name>
<affiliation wicri:level="3">
<nlm:affiliation>BioForA, INRA, ONF, Orléans, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>BioForA, INRA, ONF, Orléans</wicri:regionArea>
<placeName>
<region type="region">Centre-Val de Loire</region>
<region type="old region">Région Centre</region>
<settlement type="city">Orléans</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Sanchez, Leopoldo" sort="Sanchez, Leopoldo" uniqKey="Sanchez L" first="Leopoldo" last="Sanchez">Leopoldo Sanchez</name>
<affiliation wicri:level="3">
<nlm:affiliation>BioForA, INRA, ONF, Orléans, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>BioForA, INRA, ONF, Orléans</wicri:regionArea>
<placeName>
<region type="region">Centre-Val de Loire</region>
<region type="old region">Région Centre</region>
<settlement type="city">Orléans</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:33193528</idno>
<idno type="pmid">33193528</idno>
<idno type="doi">10.3389/fpls.2020.581954</idno>
<idno type="pmc">PMC7655903</idno>
<idno type="wicri:Area/Main/Corpus">000003</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000003</idno>
<idno type="wicri:Area/Main/Curation">000003</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000003</idno>
<idno type="wicri:Area/Main/Exploration">000003</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Favorable Conditions for Genomic Evaluation to Outperform Classical Pedigree Evaluation Highlighted by a Proof-of-Concept Study in Poplar.</title>
<author>
<name sortKey="Pegard, Marie" sort="Pegard, Marie" uniqKey="Pegard M" first="Marie" last="Pégard">Marie Pégard</name>
<affiliation wicri:level="3">
<nlm:affiliation>BioForA, INRA, ONF, Orléans, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>BioForA, INRA, ONF, Orléans</wicri:regionArea>
<placeName>
<region type="region">Centre-Val de Loire</region>
<region type="old region">Région Centre</region>
<settlement type="city">Orléans</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Segura, Vincent" sort="Segura, Vincent" uniqKey="Segura V" first="Vincent" last="Segura">Vincent Segura</name>
<affiliation wicri:level="3">
<nlm:affiliation>BioForA, INRA, ONF, Orléans, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>BioForA, INRA, ONF, Orléans</wicri:regionArea>
<placeName>
<region type="region">Centre-Val de Loire</region>
<region type="old region">Région Centre</region>
<settlement type="city">Orléans</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>AGAP, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>AGAP, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier</wicri:regionArea>
<placeName>
<region type="region">Occitanie (région administrative)</region>
<region type="old region">Languedoc-Roussillon</region>
<settlement type="city">Montpellier</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mu Oz, Facundo" sort="Mu Oz, Facundo" uniqKey="Mu Oz F" first="Facundo" last="Mu Oz">Facundo Mu Oz</name>
<affiliation wicri:level="3">
<nlm:affiliation>BioForA, INRA, ONF, Orléans, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>BioForA, INRA, ONF, Orléans</wicri:regionArea>
<placeName>
<region type="region">Centre-Val de Loire</region>
<region type="old region">Région Centre</region>
<settlement type="city">Orléans</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bastien, Catherine" sort="Bastien, Catherine" uniqKey="Bastien C" first="Catherine" last="Bastien">Catherine Bastien</name>
<affiliation wicri:level="3">
<nlm:affiliation>BioForA, INRA, ONF, Orléans, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>BioForA, INRA, ONF, Orléans</wicri:regionArea>
<placeName>
<region type="region">Centre-Val de Loire</region>
<region type="old region">Région Centre</region>
<settlement type="city">Orléans</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Jorge, Veronique" sort="Jorge, Veronique" uniqKey="Jorge V" first="Véronique" last="Jorge">Véronique Jorge</name>
<affiliation wicri:level="3">
<nlm:affiliation>BioForA, INRA, ONF, Orléans, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>BioForA, INRA, ONF, Orléans</wicri:regionArea>
<placeName>
<region type="region">Centre-Val de Loire</region>
<region type="old region">Région Centre</region>
<settlement type="city">Orléans</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Sanchez, Leopoldo" sort="Sanchez, Leopoldo" uniqKey="Sanchez L" first="Leopoldo" last="Sanchez">Leopoldo Sanchez</name>
<affiliation wicri:level="3">
<nlm:affiliation>BioForA, INRA, ONF, Orléans, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>BioForA, INRA, ONF, Orléans</wicri:regionArea>
<placeName>
<region type="region">Centre-Val de Loire</region>
<region type="old region">Région Centre</region>
<settlement type="city">Orléans</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in plant science</title>
<idno type="ISSN">1664-462X</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Forest trees like poplar are particular in many ways compared to other domesticated species. They have long juvenile phases, ongoing crop-wild gene flow, extensive outcrossing, and slow growth. All these particularities tend to make the conduction of breeding programs and evaluation stages costly both in time and resources. Perennials like trees are therefore good candidates for the implementation of genomic selection (GS) which is a good way to accelerate the breeding process, by unchaining selection from phenotypic evaluation without affecting precision. In this study, we tried to compare GS to pedigree-based traditional evaluation, and evaluated under which conditions genomic evaluation outperforms classical pedigree evaluation. Several conditions were evaluated as the constitution of the training population by cross-validation, the implementation of multi-trait, single trait, additive and non-additive models with different estimation methods (G-BLUP or weighted G-BLUP). Finally, the impact of the marker densification was tested through four marker density sets. The population under study corresponds to a pedigree of 24 parents and 1,011 offspring, structured into 35 full-sib families. Four evaluation batches were planted in the same location and seven traits were evaluated on 1 and 2 years old trees. The quality of prediction was reported by the accuracy, the Spearman rank correlation and prediction bias and tested with a cross-validation and an independent individual test set. Our results show that genomic evaluation performance could be comparable to the already well-optimized pedigree-based evaluation under certain conditions. Genomic evaluation appeared to be advantageous when using an independent test set and a set of less precise phenotypes. Genome-based methods showed advantages over pedigree counterparts when ranking candidates at the within-family levels, for most of the families. Our study also showed that looking at ranking criteria as Spearman rank correlation can reveal benefits to genomic selection hidden by biased predictions.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">33193528</PMID>
<DateRevised>
<Year>2020</Year>
<Month>11</Month>
<Day>17</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-462X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>11</Volume>
<PubDate>
<Year>2020</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in plant science</Title>
<ISOAbbreviation>Front Plant Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Favorable Conditions for Genomic Evaluation to Outperform Classical Pedigree Evaluation Highlighted by a Proof-of-Concept Study in Poplar.</ArticleTitle>
<Pagination>
<MedlinePgn>581954</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fpls.2020.581954</ELocationID>
<Abstract>
<AbstractText>Forest trees like poplar are particular in many ways compared to other domesticated species. They have long juvenile phases, ongoing crop-wild gene flow, extensive outcrossing, and slow growth. All these particularities tend to make the conduction of breeding programs and evaluation stages costly both in time and resources. Perennials like trees are therefore good candidates for the implementation of genomic selection (GS) which is a good way to accelerate the breeding process, by unchaining selection from phenotypic evaluation without affecting precision. In this study, we tried to compare GS to pedigree-based traditional evaluation, and evaluated under which conditions genomic evaluation outperforms classical pedigree evaluation. Several conditions were evaluated as the constitution of the training population by cross-validation, the implementation of multi-trait, single trait, additive and non-additive models with different estimation methods (G-BLUP or weighted G-BLUP). Finally, the impact of the marker densification was tested through four marker density sets. The population under study corresponds to a pedigree of 24 parents and 1,011 offspring, structured into 35 full-sib families. Four evaluation batches were planted in the same location and seven traits were evaluated on 1 and 2 years old trees. The quality of prediction was reported by the accuracy, the Spearman rank correlation and prediction bias and tested with a cross-validation and an independent individual test set. Our results show that genomic evaluation performance could be comparable to the already well-optimized pedigree-based evaluation under certain conditions. Genomic evaluation appeared to be advantageous when using an independent test set and a set of less precise phenotypes. Genome-based methods showed advantages over pedigree counterparts when ranking candidates at the within-family levels, for most of the families. Our study also showed that looking at ranking criteria as Spearman rank correlation can reveal benefits to genomic selection hidden by biased predictions.</AbstractText>
<CopyrightInformation>Copyright © 2020 Pégard, Segura, Muñoz, Bastien, Jorge and Sanchez.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Pégard</LastName>
<ForeName>Marie</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>BioForA, INRA, ONF, Orléans, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Segura</LastName>
<ForeName>Vincent</ForeName>
<Initials>V</Initials>
<AffiliationInfo>
<Affiliation>BioForA, INRA, ONF, Orléans, France.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>AGAP, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Muñoz</LastName>
<ForeName>Facundo</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>BioForA, INRA, ONF, Orléans, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bastien</LastName>
<ForeName>Catherine</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>BioForA, INRA, ONF, Orléans, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jorge</LastName>
<ForeName>Véronique</ForeName>
<Initials>V</Initials>
<AffiliationInfo>
<Affiliation>BioForA, INRA, ONF, Orléans, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sanchez</LastName>
<ForeName>Leopoldo</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>BioForA, INRA, ONF, Orléans, France.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>10</Month>
<Day>28</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Plant Sci</MedlineTA>
<NlmUniqueID>101568200</NlmUniqueID>
<ISSNLinking>1664-462X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">black poplar</Keyword>
<Keyword MajorTopicYN="N">breeding scheme</Keyword>
<Keyword MajorTopicYN="N">degraded phenotypes</Keyword>
<Keyword MajorTopicYN="N">genomic evaluation</Keyword>
<Keyword MajorTopicYN="N">intra-family selection</Keyword>
<Keyword MajorTopicYN="N">marker density</Keyword>
<Keyword MajorTopicYN="N">multi-trait</Keyword>
<Keyword MajorTopicYN="N">non-additive effects</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>07</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>09</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>11</Month>
<Day>16</Day>
<Hour>8</Hour>
<Minute>48</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>11</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>11</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">33193528</ArticleId>
<ArticleId IdType="doi">10.3389/fpls.2020.581954</ArticleId>
<ArticleId IdType="pmc">PMC7655903</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biometrics. 1975 Jun;31(2):423-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1174616</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Jun 12;10(6):e0128570</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26068103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>G3 (Bethesda). 2018 Aug 30;8(9):2889-2899</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29970398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>G3 (Bethesda). 2017 Jul 5;7(7):2209-2218</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28533337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2017 Nov 14;8:1905</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29184558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2018 Dec 18;19(1):946</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30563448</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>G3 (Bethesda). 2017 Mar 10;7(3):935-942</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28122953</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genet. 2014 Mar 04;15:30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24593261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Dairy Sci. 2011 Feb;94(2):1011-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21257070</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Dairy Sci. 2012 Feb;95(2):909-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22281355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heredity (Edinb). 2014 Dec;113(6):503-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25074573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2012 Oct;192(2):715-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22865733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2019 Jul;284:9-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31084883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2013 Feb;193(2):347-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23222650</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genet Sel Evol. 2005 Jan-Feb;37(1):57-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15588568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genet Sel Evol. 2017 Jul 3;49(1):54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28673233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genet Res. 2000 Jun;75(3):331-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10893869</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2013 Dec;195(4):1223-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24121775</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genet Res. 2000 Apr;75(2):249-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10816982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2019 Oct 25;10:1353</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31708955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genet. 2013 Feb 21;14:8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23433396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genet Sel Evol. 2015 May 06;47:38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25943105</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2017 Jul 11;18(1):524</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28693539</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2015 Mar;128(3):397-410</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25488416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2011 Sep;98(9):1389-414</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21865506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2013 Feb;193(2):621-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23267052</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2017 Apr 28;18(1):335</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28454519</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2020 Feb;214(2):305-331</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31879318</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2016 Apr 13;11(4):e0152045</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27074056</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2007 Dec;177(4):2389-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18073436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2020 Jul;133(7):2197-2212</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32303775</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2012 Apr;190(4):1503-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22271763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plants (Basel). 2020 Jan 13;9(1):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31941085</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2012 Nov;110(6):1303-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22645117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol Resour. 2016 Jul;16(4):1023-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26929265</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2012 Dec;192(4):1513-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23086217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heredity (Edinb). 2016 Jul;117(1):33-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27118156</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2015 Jan;128(1):145-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25367380</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Dairy Sci. 2009 Feb;92(2):433-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19164653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genet Res (Camb). 2012 Apr;94(2):73-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22624567</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Plants. 2020 Jun;6(6):630-637</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32483326</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genet Sel Evol. 2011 Jan 05;43:1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21208445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2013 Oct;195(2):573-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23934883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2018 Feb;267:84-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29362102</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genet Sel Evol. 2009 Jan 05;41:3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19284693</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Dairy Sci. 2009 Sep;92(9):4656-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19700729</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heredity (Edinb). 2015 Dec;115(6):547-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26126540</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2017 May 30;18(1):425</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28558656</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 Jun;206(4):1527-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25684350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2019 Apr 18;20(1):302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30999856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2016 Aug 11;17(1):604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27515254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2001 Apr;157(4):1819-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11290733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genet Sel Evol. 2011 Jul 05;43:26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21729282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Apr;194(1):116-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22309312</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>G3 (Bethesda). 2016 Jan 22;6(3):743-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26801647</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2017 Jan 3;18(1):3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28049412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2015 May 09;16:370</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25956247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2009 May;182(1):375-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19293140</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2017 Jun 29;17(1):110</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28662679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2017 Jul;206(3):1297-1307</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28522540</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genet Sel Evol. 2016 Feb 01;48:8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26830030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evol Appl. 2019 Jun 20;13(1):76-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31892945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Nov 17;6:941</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26635819</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2014 Dec;198(4):1759-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25324160</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2017 Jan 12;12(1):e0169606</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28081208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>G3 (Bethesda). 2018 Dec 10;8(12):3829-3840</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30291108</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2016 Feb;129(2):273-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26561306</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genet Sel Evol. 2010 Aug 11;42:33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20699012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genet Sel Evol. 2018 Jun 15;50(1):31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29907084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Anim Sci. 1984 Apr;58(4):878-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6725150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>G3 (Bethesda). 2018 Jul 31;8(8):2573-2583</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29891736</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Anim Breed Genet. 2017 Dec;134(6):453-462</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28833716</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Genet. 2016 Aug 19;7:151</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27594861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heredity (Edinb). 1999 Apr;82 (Pt 3):318-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10336707</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>France</li>
</country>
<region>
<li>Centre-Val de Loire</li>
<li>Languedoc-Roussillon</li>
<li>Occitanie (région administrative)</li>
<li>Région Centre</li>
</region>
<settlement>
<li>Montpellier</li>
<li>Orléans</li>
</settlement>
</list>
<tree>
<country name="France">
<region name="Centre-Val de Loire">
<name sortKey="Pegard, Marie" sort="Pegard, Marie" uniqKey="Pegard M" first="Marie" last="Pégard">Marie Pégard</name>
</region>
<name sortKey="Bastien, Catherine" sort="Bastien, Catherine" uniqKey="Bastien C" first="Catherine" last="Bastien">Catherine Bastien</name>
<name sortKey="Jorge, Veronique" sort="Jorge, Veronique" uniqKey="Jorge V" first="Véronique" last="Jorge">Véronique Jorge</name>
<name sortKey="Mu Oz, Facundo" sort="Mu Oz, Facundo" uniqKey="Mu Oz F" first="Facundo" last="Mu Oz">Facundo Mu Oz</name>
<name sortKey="Sanchez, Leopoldo" sort="Sanchez, Leopoldo" uniqKey="Sanchez L" first="Leopoldo" last="Sanchez">Leopoldo Sanchez</name>
<name sortKey="Segura, Vincent" sort="Segura, Vincent" uniqKey="Segura V" first="Vincent" last="Segura">Vincent Segura</name>
<name sortKey="Segura, Vincent" sort="Segura, Vincent" uniqKey="Segura V" first="Vincent" last="Segura">Vincent Segura</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000400 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000400 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:33193528
   |texte=   Favorable Conditions for Genomic Evaluation to Outperform Classical Pedigree Evaluation Highlighted by a Proof-of-Concept Study in Poplar.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:33193528" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020